134 research outputs found

    Separation of VUV/UV photons and reactive particles in the effluent of a He/O2 atmospheric pressure plasma jet

    Full text link
    Cold atmospheric pressure plasmas can be used for treatment of living tissues or for inactivation of bacteria or biological macromolecules. The treatment is usually characterized by a combined effect of UV and VUV radiation, reactive species, and ions. This combination is usually beneficial for the effectiveness of the treatment but it makes the study of fundamental interaction mechanisms very difficult. Here we report on an effective separation of VUV/UV photons and heavy reactive species in the effluent of a micro scale atmospheric pressure plasma jet (μ\mu-APPJ). The separation is realized by an additional flow of helium gas under well-defined flow conditions, which deflects heavy particles in the effluent without affecting the VUV and UV photons. Both components of the effluent, the photons and the reactive species, can be used separately or in combination for sample treatment. The results of treatment of a model plasma polymer film and vegetative Bacillus subtilis and Escherichia coli cells are shown and discussed. A simple model of the He gas flow and reaction kinetics of oxygen atoms in the gas phase and at the surface is used to provide a better understanding of the processes in the plasma effluent. The new jet modification, called X-Jet for its appearance, will simplify the investigation of interaction mechanisms of atmospheric pressure plasmas with biological samples.Comment: 10 pages, 7 figures, submitted to Journal of Physics D: Applied Physic

    Immune function biomarkers in children exposed to lead and organochlorine compounds: a cross-sectional study

    Get PDF
    BACKGROUND: Different organochlorines and lead (Pb) have been shown to have immunomodulating properties. Children are at greater risk for exposure to these environmental toxicants, but very little data exist on simultaneous exposures to these substances. METHODS: We investigated whether the organochlorine compounds (OC) dichlorodiphenylethylene (DDE), hexachlorobenzene (HCB), hexachlorocyclohexane (γ-HCH), the sum of polychlorinated biphenyls (ΣPCBs) and Pb were associated with immune markers such as immunoglobulin (Ig) levels, white blood cell (WBC), counts of lymphocytes; eosinophils and their eosinophilic granula as well as IgE count on basophils. The investigation was part of a cross-sectional environmental study in Hesse, Germany. In 1995, exposure to OC and Pb were determined, questionnaire data collected and immune markers quantified in 331 children. For the analyses, exposure (OC and Pb) concentrations were grouped in quartiles (γ-HCH into tertiles). Using linear regression, controlling for age, gender, passive smoking, serum lipids, and infections in the previous 12 months, we assessed the association between exposures and immune markers. Adjusted geometric means are provided for the different exposure levels. RESULTS: Geometric means were: DDE 0.32 μg/L, ΣPCBs 0.50 μg/L, HCB 0.22 μg/L, γ-HCH 0.02 μg/L and Pb 26.8 μg/L. The ΣPCBs was significantly associated with increased IgM levels, whereas HCB was inversely related to IgM. There was a higher number of NK cells (CD56+) with increased γ-HCH concentrations. At higher lead concentrations we saw increased IgE levels. DDE showed the most associations with significant increases in WBC count, in IgE count on basophils, IgE, IgG, and IgA levels. DDE was also found to significantly decrease eosinophilic granula content. CONCLUSION: Low-level exposures to OC and lead (Pb) in children may have immunomodulating effects. The increased IgE levels, IgE count on basophils, and the reduction of eosinophilic granula at higher DDE concentrations showed a most consistent pattern, which could be of clinical importance in the etiology of allergic diseases

    A common framework for approaches to extreme event attribution

    Get PDF
    The extent to which a given extreme weather or climate event is attributable to anthropogenic climate change is a question of considerable public interest. From a scientific perspective, the question can be framed in various ways, and the answer depends very much on the framing. One such framing is a risk-based approach, which answers the question probabilistically, in terms of a change in likelihood of a class of event similar to the one in question, and natural variability is treated as noise. A rather different framing is a storyline approach, which examines the role of the various factors contributing to the event as it unfolded, including the anomalous aspects of natural variability, and answers the question deterministically. It is argued that these two apparently irreconcilable approaches can be viewed within a common framework, where the most useful level of conditioning will depend on the question being asked and the uncertainties involved

    Anthropogenic intensification of short-duration rainfall extremes

    Get PDF
    Short- duration (1-3 h) rainfall extremes can cause serious damage to societies through rapidly developing (flash) flooding and are determined by complex, multifaceted processes that are altering as Earth's climate warms. In this Review, we examine evidence from observational, theoretical and modelling studies for the intensification of these rainfall extremes, the drivers and the impact on flash flooding. Both short- duration and long- duration (\textgreater1 day) rainfall extremes are intensifying with warming at a rate consistent with the increase in atmospheric moisture (~7% K-1), while in some regions, increases in short- duration extreme rainfall intensities are stronger than expected from moisture increases alone. These stronger local increases are related to feedbacks in convective clouds, but their exact role is uncertain because of the very small scales involved. Future extreme rainfall intensification is also modulated by changes to temperature stratification and large- scale atmospheric circulation. The latter remains a major source of uncertainty. Intensification of short- duration extremes has likely increased the incidence of flash flooding at local scales and this can further compound with an increase in storm spatial footprint to considerably increase total event rainfall. These findings call for urgent climate change adaptation measures to manage increasing flood risks

    A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers

    Get PDF
    Reactive oxygen and nitrogen species (RONS), e.g. generated by cold physical plasma (CPP) or photodynamic therapy, interfere with redox signaling pathways of mammalian cells, inducing downstream consequences spanning from migratory impairment to apoptotic cell death. However, the more austere impact of RONS on cancer cells remains yet to be clarified. In the present study, a combination of electrochemistry and high-resolution mass spectrometry was developed to investigate the resilience of solid-supported lipid bilayers towards plasma-derived reactive species in dependence of their composition. A 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was undisturbed by 200 µM H2O2 (control) but showed full permeability after CPP treatment and space-occupying oxidation products such as PoxnoPC, PAzePC, and POPC hydroperoxide were found. Electron paramagnetic resonance spectroscopy demonstrated the presence of hydroxyl radicals and superoxide anion/hydroperoxyl radicals during the treatment. In contrast, small amounts of the intramembrane antioxidant coenzyme Q10 protected the bilayer to 50% and LysoPC was the only POPC derivative found, confirming the membrane protective effect of Q10. Such, the lipid membrane composition including the presence of antioxidants determines the impact of pro-oxidant signals. Given the differences in membrane composition of cancer and healthy cells, this supports the application of cold physical plasma for cancer treatment. In addition, the developed model using the combination of electrochemistry and mass spectrometry could be a promising method to study the effect of reactive species or mixes thereof generated by chemical or physical sources
    • …
    corecore